

2B Assumptions

- Service Desalted Crude vs Resid
- Tube ID Coating Thickness 25 Microns (0.001 inch)
- Tube OD Coating Thickness 25 Microns (0.001 inch)
- Coating Thermal Conductivity 0.722 Btu/hr-ft-F
- Fuel Value -\$3.50 per MBtu/hr. Note fuel prices in Asia can be 3X compared to US
- Furnace Efficiency = 0.9
- Network Factor = 0.85 [Part of the Duty Gain in the Exchanger Diminishes Heat Transfer on other Exchangers in the Preheat Train due to changes in temperature differentials]
- CO2 Reduction based on EPA Conversion Equations
- Heat Transfer Calculation performed with HTRI XIST
- Assumed Fouling Factor shown in the Comparison Tables below
- All bundles are cleaned yearly
- Assumed Inlet Operating
 - Crude Inlet Temp 400 F
 - Crude Rate 1,800 klb/hr
 - o Resid Inlet Temp 600 F
 - Resid Rate 1,082 klb/hr

• Stream Properties

Hot Shellside Fluid		Inlet	Outlet	
Fluid name		Vac Resid		
Flow	(1000-lb/hr)	1082.8		
Temperature (F)		600.00 515.47		
Pressure	(psia)	363.50	356.81	
Weight fraction vapor	()	0.0000	0.0000	
Vapor Prope	rties			
Flow	(1000-lb/hr)		8 	
Density	(lb/ft3)	1.55		
Viscosity	(cP)	8 <u></u>		
Conductivity	(Btu/hr-ft-F)	1.000		
Heat capacity	(Btu/lb-F)			
Molecular weight	()	-	-	
Liquid Prope	rties			
Flow	(1000-lb/hr)	1082.8	1082.8	
Density	(lb/ft3)	48.667	51.039	
Viscosity	(cP)	1.5864	2.3593	
Conductivity	(Btu/hr-ft-F)	0.0526	0.0542	
Heat capacity	(Btu/lb-F)	0.7105	0.6729	
Molecular weight	()	1/22		
Latent heat	(Btu/lb)	-	-	
Surface tension	(dyne/cm)	17.027	19.611	

Cold Tubeside Fluid		Inlet	Outlet	
Fluid name		Crude		
Flow	(1000-lb/hr)	1800.0		
Temperature	(F)	400.00	458.93	
Pressure	(psia)	420.80	415.87	
Weight fraction vapor	()	0.0000	0.0000	
Vapor Proper	rties			
Flow	(1000-lb/hr)	-	(m))	
Density (Ib/ft3) /Iscosity (cP) Conductivity (Btu/hr-ft-F)				
			-	
			-	
Heat capacity (Btu/lb-F)			(* 1)	
Molecular weight	(-)	-	-	
Liquid Prope	rties			
Flow	(1000-lb/hr)	1800.0	1800.0	
Density	(lb/ft3)	41.253	39.151	
Viscosity	(cP)	0.5218	0.4066	
Conductivity	(Btu/hr-ft-F)	0.0618	0.0595	
Heat capacity	(Btu/lb-F)	0.6457	0.6771	
Molecular weight	()	-		
Latent heat	atent heat (Btu/lb)		-	
Surface tension (dyne/cm)		8.8330	47.488	

2B Heat Exchanger Geometry

- TEMA AET
- Shell Id = 54"
- 1130 Tubes
- 1" Tube OD
- 0.083" tube wall thickness
- 2 Tube Passes
- 20 ft length
- 11 Baffle Cross Passes, Single Vert Seg , 18.8% Cut

2B Results

Comparison Tables

	Carbon Steel								
Days	Qactual	Oclean	Qact/Qclean	Tubeside DP	Tubeside Fouling Factor	Shellside Fouling Factor			
	MBtu/hr	MBtu/hr		psi	ft2-hr-F/Btu	ft2-hr-F/Btu			
1	72.4	72.4	1.00	5.0	0.0000	0.0000			
91	44.9	72.4	0.62	5.7	0.0050	0.0038			
182	31.4	72.4	0.43	6.6	0.0100	0.0076			
274	23.8	72.4	0.33	7.9	0.0150	0.0114			
365	18.9	72.4	0.26	9.6	0.0200	0.0150			
				Stainless	Steel				
Days	Qactual	Qclean	Qact/Qclean	Tubeside DP	Tubeside Fouling Factor	Shellside Fouling Factor			
	MBtu/hr	MBtu/hr		psi	ft2-hr-F/Btu	ft2-hr-F/Btu			
1	71.2	71.2	1.00	4.9	0.0000	0.0000			
91	50.2	71.2	0.70	5.4	0.0034	0.0030			
182	37.7	71.2	0.53	5.9	0.0068	0.0060			
274	29.9	71.2	0.42	6.6	0.0102	0.0090			
365	24.6	71.2	0.35	7.4	0.0135	0.0120			
			(arbon Steel Coat	ted (0.001 inch)				
Days	Qactual	Qclean	Qact/Qclean	Tubeside DP	Tubeside Fouling Factor	Shellside Fouling Factor			
	MBtu/hr	MBtu/hr		psi	ft2-hr-F/Btu	ft2-hr-F/Btu			
1	71.4	71.4	1.00	5.0	0.0000	0.0000			
91	59.5	71.4	0.83	5.2	0.0017	0.0015			
182	50.1	71.4	0.70	5.4	0.0034	0.0030			
274	42.9	71.4	0.60	5.7	0.0051	0.0045			
365	37.5	71.4	0.53	6.0	0.0068	0.0060			
			St	tainless Steel Coa	ated (0.001 inch)				
Days	Qactual	Qclean	Qact/Qclean	Tubeside DP	Tubeside Fouling Factor	Shellside Fouling Factor			
	MBtu/hr	MBtu/hr		psi	ft2-hr-F/Btu	ft2-hr-F/Btu			
1	70.1	70.1	1.00	4.9	0.0000	0.0000			
91	58.5	70.1	0.83	5.1	0.0017	0.0015			
182	49.6	70.1	0.71	5.4	0.0034	0.0030			
274	42.9	70.1	0.61	5.6	0.0051	0.0045			
365	37.4	70.1	0.53	5.9	0.0068	0.0060			

2B Economic & CO2 Reduction Benefit

- 1. Coated Versus Carbon Steel
 - Annualized Duty Reduction = 14 MBtu/hr
 - Energy benefit = \$405k a year
 - CO2 Equivalent Benefit = 6,131 Tons a year
- 2. Coated Versus Stainless Steel
 - Annualized Duty Reduction = 9 MBtu/hr
 - Energy benefit = \$260k a year
 - CO2 Equivalent Benefit = 3,937 Tons a year

Note if the Crude preheat furnace is limited and/or the Preheat Train is Hydraulically limited, the margin benefits could be significant more than the credits listed above.