

Crude Preheat Tube Coating Analysis Study 2

Objectives 2A:

Following up to Study 1, for coated cases, evaluate cleaning at a 2 year frequency instead of 1 year. Quantify the benefits from the longer run length (avoiding one cleaning). Include credits for avoiding the maintenance cost and potential rate cuts required for cleaning.

This study evaluates a Crude preheat exchanger service heat transfer performance with the following tube material and coatings and estimates the energy savings and CO2 Emissions Reduction:

- Carbon Steel
- Stainless Steel
- Carbon Steel Tube ID Coated
- Stainless Steel Tube ID Coated

Assumptions 2A:

- Service Desalted Crude vs Heavy Vacuum Gas Oil (HVGO)
- Tube ID Coating Thickness 25 Microns (0.001 inch)
- Coating Thermal Conductivity 0.722 Btu/hr-ft-F
- Fuel Value -\$3.50 per MBtu/hr. Note fuel prices in Asia can be 3X compared to US
- Furnace Efficiency = 0.9
- Network Factor = 0.75 [Part of the Duty Gain in the Exchanger Diminishes Heat Transfer on other Exchangers in the Preheat Train due to changes in temperature differentials]
- CO2 Reduction based on EPA Conversion Equations
- Heat Transfer Calculation performed with HTRI XIST
- Assumed Fouling Factor shown in the Comparison Tables below
- Coated bundles are cleaned at 2 year frequency
- Non coated bundles are cleaned yearly
- Assumed Inlet Operating
 - Crude Inlet Temp 370 F
 - Crude Rate 650 klb/hr
 - o HVGO Inlet Temp 505 F
 - HVGO Rate 675 klb/hr
- 7 Days Oil Out to Oil In for Exchanger Cleaning
- Maintenance Cost for Cleaning \$40k
- Margin Cost Per Day During Cleaning Approx \$15k per day

Stream Properties

Hot Shellside Fluid		Inlet	Outlet
Fluid name		VHG	iO
Flow	(1000-lb/hr)	675	00
Temperature	(F)	505.00	475 18
Pressure	(psia)	111.67	107.09
Weight fraction vapor	(-)	0.0000	0.0000
Vapor Prope	rties	12	
Flow	(1000-lb/hr)	-	1.000
Density	(lb/ft3)		1
Viscosity	(cP)		
Conductivity	(Btu/hr-ft-F)		
Heat capacity	(Btu/lb-F)		
Molecular weight	()	-	
Liquid Prope	rties		
Flow	(1000-lb/hr)	675.00	675.00
Density	(lb/ft3)	46.741	47.559
Viscosity	(cP)	1.4807	1.5337
Conductivity	(Btu/hr-ft-F)	0.0528	0.0537
Heat capacity	(Btu/lb-F)	0.6831	0.6657
Molecular weight	()	-	
Latent heat	(Btu/lb)		1.55
Surface tension	(dyne/cm)	0.0000	0.0000

Cold Tubeside Fluid		Inlet	Outlet
Fluid name		Cruc	de
Flow	(1000-lb/hr)	650	00
Temperature	(F)	370.00	402.61
Pressure (psia)		381.37	372 57
Weight fraction vapor	u ()	0.0000	0.0000
Vapor Prope	rties		
Flow	(1000-lb/hr)		-
Density	(lb/ft3)		
Viscosity	(cP)		
Conductivity	(Btu/hr-ft-F)	-	
Heat capacity	(Btu/lb-F)		
Molecular weight	()		
Liquid Prope	rties		
Flow	(1000-lb/hr)	650.00	650.00
Density	(lb/ft3)	44.085	42.918
Viscosity	(cP)	0.8648	0.6984
Conductivity	(Btu/hr-ft-F)	0.0671	0.0646
Heat capacity	(Btu/lb-F)	0.6233	0.6342
Molecular weight	()		
Latent heat	(Btu/lb)	1.77	
Surface tension	(dyne/cm)	0.0000	0.0000

2A Heat Exchanger Geometry

- TEMA AES
- Shell ID = 50"
- 1054 Tubes
- 1" Tube OD
- 0.083" tube wall thickness
- 4 Tube Passes
- 20 ft length
- 11 Baffle Cross Passes, Single Vert Seg , 20.9% Cut

2A Results

Comparison Tables

	Carbon Steel									
Days	Qactual	Qclean	Qact/Qclean	Tubeside DP	Tubeside Fouling Factor	Shellside Fouling Factor				
	MBtulhr	MBtułhr		psi	ft2-hr-FfBtu	ft2-hr-F/Btu				
1	27.9	27.9	1.00	3.9	0.0000	0.0000				
91	22.7	27.9	0.81	4.7	0.0044	0.0013				
182	18.7	27.9	0.67	5.8	0.0088	0.0025				
274	15.6	27.9	0.56	7.1	0.0131	0.0038				
365	13.2	27.9	0.47	8.8	0.0175	0.0050				
			2	Stainless Steel						
Days	Qactual	Qclean	Qact/Qclean	Tubeside DP	Tubeside Fouling Factor	Shellside Fouling Factor				
	MBtulhr	MBtułhr		psi	ft2-hr-FfBtu	ft2-hr-F/Btu				
1	27.6	27.6	1.00	3.9	0.0000	0.0000				
91	23.8	27.6	0.86	4.5	0.0030	0.0010				
182	20.8	27.6	0.75	5.1	0.0060	0.0020				
274	18.2	27.6	0.66	5.1	0.0090	0.0030				
365	16.0	27.6	0.58	6.7	0.0120	0.0040				
			Carbon S	Steel Coated (0.00	D1 inch)					
Days	Qactual	Qclean	Qact/Qclean	Tubeside DP	Tubeside Fouling Factor	Shellside Fouling Factor				
	MBtulhr	MBtułhr		psi	ft2-hr-F/Btu	ft2-hr-F/Btu				
1	27.8	27.8	1.00	3.9	0.0000	0.0000				
91	25.3	27.8	0.91	4.2	0.0015	0.0013				
182	23.0	27.8	0.83	4.5	0.0030	0.0025				
274	21.0	27.8	0.75	4.8	0.0045	0.0038				
365	19.3	27.8	0.69	5.1	0.0060	0.0050				
456	17.7	27.8	0.64	5.5	0.0075	0.0063				
547	16.4	27.8	0.59	5.9	0.0090	0.0075				
638	15.2	27.8	0.55	6.3	0.0105	0.0088				
730	14.2	27.8	0.51	6.8	0.0120	0.0100				
		() ()	Stainless	Steel Coated (0.0	DO1 inch)	2				
Days	Qactual	Qclean	Qact/Qclean	Tubeside DP	Tubeside Fouling Factor	Shellside Fouling Factor				
	MBtulhr	MBtułhr		psi	ft2-hr-F/Btu	ft2-hr-F/Btu				
1	27.5	27.5	1.00	3.9	0.0000	0.0000				
91	25.2	27.5	0.91	4.2	0.0015	0.0010				
182	23.0	27.5	0.84	4.5	0.0030	0.0020				
274	21.1	27.5	0.77	4.8	0.0045	0.0030				
365	19.5	27.5	0.71	5.1	0.0060	0.0040				
456	18.1	27.5	0.66	5.5	0.0075	0.0050				
547	16.8	27.5	0.61	5.9	0.0090	0.0060				
638	15.7	27.5	0.57	6.3	0.0105	0.0070				
730	14.6	27.5	0.53	6.8	0.0120	0.0080				

CRUDE PREHEAT (CRUDE/HVGO)

Carbon Steel Duty MBtu/hr
Stainless Steel Duty MBtu/hr
Carbon Steel Coated Duty MBtu/hr
Stainless Steel Coated Duty MBtu/hr

2A Economic & CO2 Reduction Benefit

- 3. Coated Carbon Steel (cleaned 2yr interval) Versus Carbon Steel (cleaned yearly)
 - Annualized Duty Reduction = 0.6 MBtu/hr
 - Energy benefit = \$28k over 2 years
 - Margin + Maintenance benefit from increasing cleaning interval = \$105k+\$40k=\$145k
 - CO2 Equivalent Benefit = 423 Tons over 2 years
 - Overall Benefit = \$28k + \$145 k = **\$173k**
- 4. Coated Stainless Steel Versus Stainless Steel
 - Annualized Duty Reduction = -0.9 MBtu/hr
 - Energy benefit = -\$46.8k over 2 years
 - Margin + Maintenance benefit from increasing cleaning interval = \$96.8k+\$40k=\$136.7k
 - CO2 Equivalent Increase Emissions = 708 Tons over 2 years
 - Overall Benefit = -\$46.8k + \$136.7k = **\$89.9k**

Objectives 2B:

Repeat of Study 1, but it assumes anti-fouling coating on both tube OD & ID.

This study evaluates a Crude preheat exchanger service heat transfer performance with the following tube material and coatings and estimates the energy savings and CO2 Emissions Reduction:

- Carbon Steel
- Stainless Steel
- Carbon Steel Tube ID & OD Coated
- Stainless Steel Tube ID & OD Coated